SOLVOLYSIS OF SPIRO[2.5]OCTA-1,4,7-TRIEN-6-ONES EVIDENCE OF A VINYL CATION INTERMEDIATE

Toshihiko IKEDA, Shinjiro KOBAYASHI, and Hiroshi TANIGUCHI*

Department of Applied Chemistry, Faculty of Engineering,

Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812

Ethanolysis of 1-aryl-5,7-di-t-butyl-2-phenylspiro[2.5]octa-1, 4,7-trien-6-one $\underline{2}$ proceeds via a vinyl cation generated by opening of the cyclopropene ring, judging from regiospecific ring opening and kinetics (ρ^+ = -3.0, m= 0.53, and rate dependence on pH of the solvent).

A vinyl cation has widely been recognized as one of reactive intermediates. 1) The usual methods to generate a vinyl cation are i) heterolysis of vinyl derivatives and ii) electrophilic addition to acetylenic or allenic compounds. Pirkle et al. suggested intervention of a vinyl cation in the reaction of 1,2-dimethyl-spiro[2.5]octatrienone $\underline{1}$ with trifluoroacetic acid. 2) To clarify generation of a vinyl cation in such a reaction we examined the reaction of 1-aryl-5,7-di-t-butyl-2-phenylspiro[2.5]octa-1,4,7-trien-6-one $\underline{2}$ 3) under solvolytic conditions. Spiro-[2.5]octatrienone $\underline{2}$ must be much more adequate system to study than $\underline{1}$, since $\underline{2}$ gives α -arylvinyl cation which is much more stable than α -methylvinyl cation from $\underline{1}$. Changing the aryl group may give a criterion for formation of a vinyl cation.

We will show here evidence for generation of a vinyl cation in solvolysis of spiro[2,5]octatrienone 2.

The reaction of spiro[2.5]octatrienone 2a (113 mg, 0.27 mmol) in ethanol (10

ml) at a room temperature for 38 h gave a 1:1 mixture of E- and Z-vinyl ethyl ether $\underline{3a}$ quantitatively. Vinyl ethyl ether $\underline{4a}$, the isomer of $\underline{3a}$, could not be detected in the reaction mixture at all. Similar treatment of $\underline{2b}$ and $\underline{2c}$ also gave only vinyl ethyl ether $\underline{3b}$ [E/Z(or Z/E)= 45/55] and $\underline{3c} \equiv \underline{4c}$ [E/Z(or Z/E)= 43/57], respectively. The formation of $\underline{3a}$, without $\underline{4a}$, b shows a regiospecific opening of the cyclopropene ring.

The reaction rates of the solvolysis of $\underline{2}$ were measured and the first-order rate constants are shown in Table 1 and 2. The reaction of $\underline{2a}$ was accelerated with increasing the content of water in the solvent. The solvent effect relatively well correlated with the Grunwald-Winstein's Y-value (m= 0.53 in aqueous ethanol at 30 °C). A large substituent effect was observed; $k_{rel} = 1.0$: 4.2: 380 for $\underline{2c}$: $\underline{2b}$: $\underline{2a}$ ($\rho^+ = -3.0$). In basic conditions the rate constants were unchanged but in more acidic conditions (pH <10.5) the rate increased as the pH decreased.

The above results substantiate the formation of vinyl cation $\underline{6}$ as the reactive intermediate in the solvolysis of spiro[2.5]octatrienone $\underline{2}$. Vinyl cation $\underline{6}$ should come from opening of the cyclopropene ring, both C-C bonds of which are weakened by protonation or hydrogen bonding on the carbonyl oxygen as shown in $\underline{5}$. The solvent effect is agreement with those in solvolysis of vinyl derivatives (e.g. m= 0.53 for $An_2C=C(C1)An$ in 80-65% aq.EtOH)⁵) and the substituent effect is a little bit small⁶) but comparable with those in solvolysis of vinyl derivatives ($\rho^+=-4.1$ for $CH_2=C(OSO_2CF_3)Ar)^7$) and in acid-hydrolysis of acetylenic compounds ($\rho^+=-3.8$ for $ArC\equiv CH/H_2SO_4$).⁸) The pH of the solvent must largely influence the reaction rates, because vinyl cation $\underline{6}$ results from protonation of $\underline{2}$. The regiospecific ring opening is consistent with the stability of the resultant vinyl cation, that is, the formation of vinyl cation $\underline{6}$ rather than $\underline{7}$. A triarylvinyl cation like $\underline{6}$ usually has a linear structure to which nucleophile(s) can attack from the both directions, so that a 1:1 mixture of E- and E- vinyl derivatives is formed.⁹⁾ Therefore, the formation of a ca. 1:1 mixture of E- and E- vinyl ethyl ether E- also supports the

formation of vinyl cation $\underline{6}$ as the reactive intermediate in the solvolysis of $\underline{2}$.

Table 1. Kinetics of the solvolysis of 2 in aqueous ethanol.

Compound	Solvent/% EtOH	Temp/°C	$k/10^4 s^{-1} a)$
<u>2a</u>	100	30	0.792 + 0.054
	90	20	0.731 ± 0.003
	90	30	2.58 <u>+</u> 0.01
	90	40	6.79 ± 0.45
	90	70	123 ^{c)}
	80	30	8.31 <u>+</u> 0.36
	70	30	18.9 <u>+</u> 6.6
	b)	30	2.19 ± 0.01
<u>2b</u>	90	70	1.37 ± 0.03
<u>2c</u>	90	70	$0.653 + 0.012$ $(0.327)^{d}$

- a) All reactions were followed spectroscopically at 340 nm for 2a, 330 nm for
- $\underline{2b}$ and $\underline{2c}$. All rate constants are an average of duplicated determinations.
- b) Absolute methanol. c) Extrapolated from the data at lower temperature.
- d) Corrected statistically.

Table 2. Kinetics of 2a in methanola) at 25 °C

Added Solutes	$Conc/10^3 mol 1^{-1}$	pH ^{b)}	k/10 ⁴ s ^{-1 c)}
CH3COOH/CH3COONa	43.7/40.3	9.728	383 <u>+</u> 19
CH3COOH/CH3COONa	31.6/41.6	9.762	359 <u>+</u> 2
CH3COOH/CH3COONa	27.2/48.2	9.820	201 <u>+</u> 3
CH3COOH/CH3COONa	2.50/60.5	10.00	15.6 <u>+</u> 0.7
CH ₃ COONa	0.61	13.48	0.558 <u>+</u> 0.002
CH ₃ ONa	12.1	14.78	0.516 <u>+</u> 0.002
СН _З ОNа	121	15.78	0.543 <u>+</u> 0.006

- a) As the solvents, 99.34% MeOH-0.66% Et₂O was used. b) According to ref. 10.
- c) All reactions were followed spectroscopically at 336 nm. All rate constants are an average of duplicated determinations.

References

- 1) P.J.Stang, Z.Rappoport, M.Hanack, and L.R.Subramanian, "Vinyl Cations", Academic Press, London, 1979.
- 2) W.H.Pirkle, D.Chamot, and W.A.Day, J.Org.Chem., 33, 2153(1968).
- 3) T.Ikeda, S.Kobayashi, and H.Taniguchi, Synthesis in press.
- 4) NMR spectra of $\underline{3}$. $\underline{3a}$; δ 1.12(t,J=7 Hz,3H), 1.18 and 1.36(s,18H), 3.60(q,J=7 Hz,2H), 3.68 and 3.69(s,3H), 4.85 and 4.98(s,3H), 6.47-7.46(m,11H). $\underline{3b}$; δ 1.20(t, J=7 Hz,3H), 1.12 and 1.35(s,18H), 2.22(s,3H), 3.44(q,J=7 Hz,2H), 4.77 and 4.91(s,1H), 6.44-7.40(m,11H). $\underline{6c}$; δ 1.22(t,J=7 Hz,3H), 1.12 and 1.34(s,18H), 3.56(q,J=7 Hz,2H), 4.77 and 4.90(s,1H), 6.49-7.80(m,12H). The structure of these vinyl ethyl ether $\underline{3}$ was further confirmed by acid-hydrolysis, which gave ketone $\underline{8}$ and its oxidized product $\underline{9}$. There was no ketones $\underline{10}$ and $\underline{11}$ expected from vinyl ethyl ether $\underline{4}$ even in the mother liquor after isolation of $\underline{8}$ and $\underline{9}$. The structure of $\underline{8}$ and $\underline{9}$

which has a p-substituted benzoyl group were distinguished from those of $\underline{10}$ and $\underline{11}$ which has a benzoyl group by NMR(arom.) and MS(ArCO $^+$) spectra. Spectra data and mp of $\underline{8}$ and $\underline{9}$. 8a; 158-160°C. δ 1.38(s,18H), 3.80(s,3H), 5.00(s,1H), 5.79(s,1H), 6.84-8.06(m,11H). ν_{max} 3521, 1670 cm $^{-1}$. λ_{max} 272 nm(log ϵ , 4.31), 230(4.90,sh). $\underline{8b}$; 164-166°C. δ 1.35(s,18H), 2.31(s,3H), 4.85(s,1H), 5.67(s,1H), 6.84-7.85(m,11H). ν_{max} 3612, 1679 cm $^{-1}$. λ_{max} 275 nm(log ϵ , 3.66), 254(4.24), 241(4.21). $\underline{8c}$; 119-123°C. δ 1.35(s,18H), 4.87(s,1H), 5.70(s,1H), 6.80-7.95(m,12H). ν_{max} 3560, 1672 cm $^{-1}$. λ_{max} 282 nm(log ϵ , 3.43,sh), 272(3.45), 237(4.27). $\underline{9a}$; 171-173°C. δ 1.12 (s,9H), 1.20(s,9H), 3.80(s,3H), 6.75-8.00(m,11H). ν_{max} 1646,1618, 1610 cm $^{-1}$. λ_{max} 338 nm(log ϵ , 3.42), 310(4.29),274(4.23). $\underline{9b}$; 169-170°C. δ 1.08(s,9H), 1.20(s,9H), 3.80(s,3H), 6.75-8.00(m,11H). ν_{max} 1657, 1623, 1615, 1605 cm $^{-1}$. λ_{max} 338 nm (log ϵ , 4.41), 251(4.22). $\underline{9c}$; 142-145°C. δ 1.08(s,9H), 1.20(s,9H),6.60-8.00(m,12H). ν_{max} 1665, 1643, 1619, 1609 cm $^{-1}$. λ_{max} 338 nm(log ϵ , 4.39), 244(4.20). The structure of $\underline{8}$ and $\underline{9}$ was also established by elementary analysis and MS spectra. * NMR spectra were measured in CCl4 with TMS as an internal standard, IR with nujol, and UV in cyclohexane.

- 5) Z.Rappoport and A.Gal, J.Am.Chem.Soc., 91,5246(1969).
- 6) Cationic character of the developing vinyl cation must be dispersed by perturbation like a phenonium ion, which must lead to a relatively small ρ^+ value.
- 7) P.J. Stang, R.J. Hargrove, and T.E. Dueber, J. Chem. Soc., Perkin Trans. 2, 1486(1977).
- 8) D.S.Noyce and M.D.Schiavelli, J.Am.Chem.Soc., 90, 1020(1968).
- 9) Z.Rappoport and Y.Apeloig, J.Am.Chem.Soc., 97, 821(1975).
- 10) S. Winstein and R. Baird, J. Am. Chem. Soc., <u>85</u>, 567(1963).

(Received December 18, 1981)